\(\int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx\) [172]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-1)]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 38, antiderivative size = 196 \[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\frac {(-1)^{3/4} a^{5/2} (2 A-5 i B) \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(4+4 i) a^{5/2} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {a^2 (2 i A-B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}} \]

[Out]

(-1)^(3/4)*a^(5/2)*(2*A-5*I*B)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d+(4+4*I)*
a^(5/2)*(A-I*B)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d+a^2*(2*I*A-B)*tan(d*x+c)^(1
/2)*(a+I*a*tan(d*x+c))^(1/2)/d-2*a*A*(a+I*a*tan(d*x+c))^(3/2)/d/tan(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.75 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.237, Rules used = {3674, 3675, 3682, 3625, 211, 3680, 65, 223, 209} \[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\frac {(-1)^{3/4} a^{5/2} (2 A-5 i B) \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(4+4 i) a^{5/2} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {a^2 (-B+2 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}} \]

[In]

Int[((a + I*a*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(3/2),x]

[Out]

((-1)^(3/4)*a^(5/2)*(2*A - (5*I)*B)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]
)/d + ((4 + 4*I)*a^(5/2)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d
 + (a^2*((2*I)*A - B)*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/d - (2*a*A*(a + I*a*Tan[c + d*x])^(3/2))/
(d*Sqrt[Tan[c + d*x]])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3674

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-a^2)*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x]
)^(n + 1)/(d*f*(b*c + a*d)*(n + 1))), x] - Dist[a/(d*(b*c + a*d)*(n + 1)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c
 + d*Tan[e + f*x])^(n + 1)*Simp[A*b*d*(m - n - 2) - B*(b*c*(m - 1) + a*d*(n + 1)) + (a*A*d*(m + n) - B*(a*c*(m
 - 1) + b*d*(n + 1)))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && E
qQ[a^2 + b^2, 0] && GtQ[m, 1] && LtQ[n, -1]

Rule 3675

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*B*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*
(m + n))), x] + Dist[1/(d*(m + n)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^n*Simp[a*A*d*(m + n)
 + B*(a*c*(m - 1) - b*d*(n + 1)) - (B*(b*c - a*d)*(m - 1) - d*(A*b + a*B)*(m + n))*Tan[e + f*x], x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1]

Rule 3680

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[b*(B/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 3682

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}+2 \int \frac {(a+i a \tan (c+d x))^{3/2} \left (\frac {1}{2} a (4 i A+B)+\frac {1}{2} a (2 A+i B) \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}} \, dx \\ & = \frac {a^2 (2 i A-B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}+2 \int \frac {\sqrt {a+i a \tan (c+d x)} \left (\frac {3}{4} a^2 (2 i A+B)-\frac {1}{4} a^2 (2 A-5 i B) \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}} \, dx \\ & = \frac {a^2 (2 i A-B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}+\left (4 a^2 (i A+B)\right ) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx-\frac {1}{2} (a (2 i A+5 B)) \int \frac {(a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx \\ & = \frac {a^2 (2 i A-B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}+\frac {\left (8 a^4 (A-i B)\right ) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {\left (a^3 (2 i A+5 B)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{2 d} \\ & = \frac {(4+4 i) a^{5/2} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {a^2 (2 i A-B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}-\frac {\left (a^3 (2 i A+5 B)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+i a x^2}} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d} \\ & = \frac {(4+4 i) a^{5/2} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {a^2 (2 i A-B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}}-\frac {\left (a^3 (2 i A+5 B)\right ) \text {Subst}\left (\int \frac {1}{1-i a x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d} \\ & = \frac {\sqrt [4]{-1} a^{5/2} (2 i A+5 B) \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(4+4 i) a^{5/2} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {a^2 (2 i A-B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{d \sqrt {\tan (c+d x)}} \\ \end{align*}

Mathematica [B] (verified)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(485\) vs. \(2(196)=392\).

Time = 7.22 (sec) , antiderivative size = 485, normalized size of antiderivative = 2.47 \[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 A (a+i a \tan (c+d x))^{5/2}}{d \sqrt {\tan (c+d x)}}+\frac {2 \left (\frac {2 i a^3 A \sqrt {a+i a \tan (c+d x)} \left (-\frac {3}{4} (-1)^{3/4} \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right )+\frac {5}{4} \sqrt {1+i \tan (c+d x)} \sqrt {\tan (c+d x)}+\frac {1}{2} i \sqrt {1+i \tan (c+d x)} \tan ^{\frac {3}{2}}(c+d x)\right )}{d \sqrt {1+i \tan (c+d x)}}+\frac {a \left (2 a^2 A+\frac {1}{2} i a^2 (5 i A+B)\right ) \left (-\frac {4 i \sqrt {2} a \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\tan (c+d x)}}{\sqrt {i a \tan (c+d x)}}+\frac {4 i a^{3/2} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {1+i \tan (c+d x)} \sqrt {\tan (c+d x)}}{\sqrt {i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+i \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}+\frac {i \sqrt {a} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{\sqrt {1+i \tan (c+d x)} \sqrt {i a \tan (c+d x)}}\right )}{d}\right )}{a} \]

[In]

Integrate[((a + I*a*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(3/2),x]

[Out]

(-2*A*(a + I*a*Tan[c + d*x])^(5/2))/(d*Sqrt[Tan[c + d*x]]) + (2*(((2*I)*a^3*A*Sqrt[a + I*a*Tan[c + d*x]]*((-3*
(-1)^(3/4)*ArcSinh[(-1)^(1/4)*Sqrt[Tan[c + d*x]]])/4 + (5*Sqrt[1 + I*Tan[c + d*x]]*Sqrt[Tan[c + d*x]])/4 + (I/
2)*Sqrt[1 + I*Tan[c + d*x]]*Tan[c + d*x]^(3/2)))/(d*Sqrt[1 + I*Tan[c + d*x]]) + (a*(2*a^2*A + (I/2)*a^2*((5*I)
*A + B))*(((-4*I)*Sqrt[2]*a*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Tan[c +
d*x]])/Sqrt[I*a*Tan[c + d*x]] + ((4*I)*a^(3/2)*ArcSinh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]]*Sqrt[1 + I*Tan[c + d*x]
]*Sqrt[Tan[c + d*x]])/(Sqrt[I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) + I*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*
Tan[c + d*x]] + (I*Sqrt[a]*ArcSinh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]]*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x
]])/(Sqrt[1 + I*Tan[c + d*x]]*Sqrt[I*a*Tan[c + d*x]])))/d))/a

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 562 vs. \(2 (161 ) = 322\).

Time = 0.16 (sec) , antiderivative size = 563, normalized size of antiderivative = 2.87

method result size
derivativedivides \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (6 i A \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )-2 i \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+3 B \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )-2 B \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+4 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )-2 \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \tan \left (d x +c \right ) a -4 A \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-4 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )\right )}{2 d \sqrt {\tan \left (d x +c \right )}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(563\)
default \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (6 i A \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )-2 i \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+3 B \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )-2 B \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+4 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )-2 \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \tan \left (d x +c \right ) a -4 A \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-4 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )\right )}{2 d \sqrt {\tan \left (d x +c \right )}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(563\)
parts \(\frac {A \left (-i \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )-\sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \tan \left (d x +c \right ) a -4 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \tan \left (d x +c \right )-2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2}}{d \sqrt {\tan \left (d x +c \right )}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}+\frac {B \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) a^{2} \left (-2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}-5 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a +2 i \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a +8 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a -2 \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \right )}{2 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(751\)

[In]

int((a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/2/d*(a*(1+I*tan(d*x+c)))^(1/2)*a^2*(6*I*A*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(
I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a*tan(d*x+c)-2*I*(I*a)^(1/2)*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan
(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)+3*B*ln(1/2*(2*I*a*tan(d*x+c)+
2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a*tan(d*x+c)-2*B*(I*a)^(1/2)*
(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)+4*I*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+
I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a*tan(d*x+c)-2*(I*a)^(1/2)*2^(1/2)*ln((2*2^(1/2)
*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)*a-4*A*(I*a)
^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-4*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(
d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a*tan(d*x+c))/tan(d*x+c)^(1/2)/(a*tan(d*x+c)*(1+I*tan(
d*x+c)))^(1/2)/(I*a)^(1/2)/(-I*a)^(1/2)

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 857 vs. \(2 (150) = 300\).

Time = 0.28 (sec) , antiderivative size = 857, normalized size of antiderivative = 4.37 \[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\text {Too large to display} \]

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

-1/2*(4*sqrt(2)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log((sqrt(2)*sqrt(-(-I*A^2
 - 2*A*B + I*B^2)*a^5/d^2)*d*e^(I*d*x + I*c) + sqrt(2)*((-I*A - B)*a^2*e^(2*I*d*x + 2*I*c) + (-I*A - B)*a^2)*s
qrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c
)/((-I*A - B)*a^2)) - 4*sqrt(2)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log(-(sqrt
(2)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^5/d^2)*d*e^(I*d*x + I*c) - sqrt(2)*((-I*A - B)*a^2*e^(2*I*d*x + 2*I*c) +
(-I*A - B)*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))
)*e^(-I*d*x - I*c)/((-I*A - B)*a^2)) + 2*sqrt(2)*((2*I*A + B)*a^2*e^(3*I*d*x + 3*I*c) + (2*I*A - B)*a^2*e^(I*d
*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + sq
rt((4*I*A^2 + 20*A*B - 25*I*B^2)*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log((sqrt(2)*((2*I*A + 5*B)*a^2*e^(2*I*d
*x + 2*I*c) + (2*I*A + 5*B)*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d
*x + 2*I*c) + 1)) + 2*sqrt((4*I*A^2 + 20*A*B - 25*I*B^2)*a^5/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/((2*I*A
+ 5*B)*a^2)) - sqrt((4*I*A^2 + 20*A*B - 25*I*B^2)*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log((sqrt(2)*((2*I*A +
5*B)*a^2*e^(2*I*d*x + 2*I*c) + (2*I*A + 5*B)*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*
c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) - 2*sqrt((4*I*A^2 + 20*A*B - 25*I*B^2)*a^5/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*
x - I*c)/((2*I*A + 5*B)*a^2)))/(d*e^(2*I*d*x + 2*I*c) - d)

Sympy [F]

\[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {5}{2}} \left (A + B \tan {\left (c + d x \right )}\right )}{\tan ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((a+I*a*tan(d*x+c))**(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)**(3/2),x)

[Out]

Integral((I*a*(tan(c + d*x) - I))**(5/2)*(A + B*tan(c + d*x))/tan(c + d*x)**(3/2), x)

Maxima [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

Timed out

Giac [F(-2)]

Exception generated. \[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Non regular value [0] was discarded and replaced randomly by 0=[-90]Warning, replacing -90 by -93, a substi
tution vari

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}}{{\mathrm {tan}\left (c+d\,x\right )}^{3/2}} \,d x \]

[In]

int(((A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(5/2))/tan(c + d*x)^(3/2),x)

[Out]

int(((A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(5/2))/tan(c + d*x)^(3/2), x)